
CNT 4714: Threading Part 2 Page 1 Dr. Mark Llewellyn ©

CNT 4714: Enterprise Computing

Fall 2011

Programming Multithreaded Applications in Java

Part 2

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cnt4714/fall2011

CNT 4714: Threading Part 2 Page 2 Dr. Mark Llewellyn ©

Threads
• In the previous section of notes the thread examples all

involved threads which were unsynchronized. None of the

threads actually needed to communicate with one another

and they did not require access to a shared object.

• The threads we’ve seen so far fall into the category of

unrelated threads. These are threads which do different tasks

and do not interact with one another.

• A slightly more complex form of threading involves threads

which are related but unsynchronized. In this case, multiple

threads operate on different pieces of the same data structure.

An example of this type of threading is illustrated on the next

page with a threaded program to determine if a number is

prime.

CNT 4714: Threading Part 2 Page 3 Dr. Mark Llewellyn ©

//class for threaded prime number testing

//no inheritance issues so using the simple form of thread creation

class testRange extends Thread {

static long possPrime;

long from, to; //test range for a thread

//constructor

//record the number to be tested and the range to be tried

testRange(int argFrom, long argpossPrime) {

possPrime = argpossPrime;

if (argFrom ==0) from = 2; else from = argFrom;

to=argFrom+99;

}

//implementation of run

public void run() {

for (long i=from; i <= to && i<possPrime; i++) {

if (possPrime % i == 0) {

//i divides possPrime exactly

System.out.println("factor " + i + " found by thread " + getName());

break; //exit for loop immediately

}

yield(); //suspend thread

}

}

}

Prime Number Tester Class

CNT 4714: Threading Part 2 Page 4 Dr. Mark Llewellyn ©

//driver class to demonstrate threaded prime number tester

public class testPrime {

public static void main (String s[]) {

//number to be tested for primality is entered as a command line argument

//examples: 5557 is prime, 6841 is prime, 6842 is not prime

long possPrime = Long.parseLong(s[0]);

int centuries = (int) (possPrime/100) + 1;

for (int i=0; i<centuries;i++) {

new testRange(i*100, possPrime).start();

}

}

}

Driver Class for Prime

Number Tester

• This is an example of related but unsynchronized threads. In this case the

threads are related since they are each working on a piece of the same

data, but approach it from a slightly different perspective. However, they

are unsynchronized since they do not share information.

CNT 4714: Threading Part 2 Page 5 Dr. Mark Llewellyn ©

2048 and 6842 are not

prime – their factors are

shown by the thread

which discovered the

factor.

5557 is prime so no

thread will find a factor

CNT 4714: Threading Part 2 Page 6 Dr. Mark Llewellyn ©

Related and Synchronized Threads
• The most complicated type of threaded application involves

threads which interact with each other. These are related

synchronized threads.

• Without synchronization when multiple threads share an object

and that object is modified by one or more of the threads,

indeterminate results may occur. This is known as a data race

or race condition.

• The example on the following page illustrates a race condition.

In this example, we simulate a steam boiler and the reading of

its pressure. The program starts 10 unsynchronized threads

which each read the pressure of the boiler and if it is found to

be below the safe limit, the pressure in the boiler is increased by

15psi. Looking at the results you can clearly see the problem

with this approach.

CNT 4714: Threading Part 2 Page 7 Dr. Mark Llewellyn ©

// class to simulate a steam boiler to illustrate a race condition in unsynchronized threads

public class SteamBoiler {

static int pressureGauge = 0;

static final int safetyLimit = 20;

public static void main(String [] args) {

pressure []psi = new pressure[10];

for (int i = 0; i < 10; i++) {

psi[i] = new pressure();

psi[i].start();

}

//we now have 10 threads in execution to monitor the pressure

try {

for (int i = 0; i < 10; i++)

psi[i].join(); //wait for the thread to finish

}

catch (Exception e) { } //do nothing

System.out.println("Gauge reads " + pressureGauge + ", the safe limit is 20");

}

}

Class to Simulate a Steam Boiler – Pressure Gauge

CNT 4714: Threading Part 2 Page 8 Dr. Mark Llewellyn ©

Thread Class to Read Steam Boiler Pressure Gauge and

Increase the Pressure if Within Range

//thread class to raise the pressure in the Boiler

class pressure extends Thread {

void RaisePressure() {

if (SteamBoiler.pressureGauge < SteamBoiler.safetyLimit-15) {

//wait briefly to simulate some calculations

try {sleep(100); } catch (Exception e) { }

SteamBoiler.pressureGauge+= 15; //raise the pressure 15 psi

System.out.println("Thread " + getName() + " finds pressure within limits -

increases pressure");

}

else ; //the pressure is too high - do nothing

}// end RaisePressure

public void run() {

RaisePressure(); //this thread is to raise the pressure

}

}

CNT 4714: Threading Part 2 Page 9 Dr. Mark Llewellyn ©

This is what caused

the race condition

to occur.

Output From Execution

Illustrating the Race Condition

CNT 4714: Threading Part 2 Page 10 Dr. Mark Llewellyn ©

Interesting Note on Race Conditions
• You may remember the large North American power blackout that occurred on

August 14, 2003. Roughly 50 million people lost electrical power in a region
stretching from Michigan through Canada to New York City. It took three days
to restore service to some areas.

• There were several factors that contributed to the blackout, but the official report
highlights the failure of the alarm monitoring software which was written in C++
by GE Energy. The software failure wrongly led operators to believe that all was
well, and precluded them from rebalancing the power load before the blackout
cascaded out of control.

• Because the consequences of the software failure were so severe, the bug was
analyzed exhaustively. The root cause was finally identified by artificially
introducing delays in the code (just like we did in the previous example). There
were two threads that wrote to a common data structure, and through a coding
error, they could both update it simultaneously. It was a classic race condition,
and eventually the program “lost the race”, leaving the structure in an inconsistent
state. That in turn caused the alarm event handler to spin in an infinite loop,
instead of raising the alarm. The largest power failure in the history of the US
and Canada was caused by a race condition bug in some threaded C++ code.
Java is equally vulnerable to this kind of bug.

CNT 4714: Threading Part 2 Page 11 Dr. Mark Llewellyn ©

The Therac-25 Accidents
• Starting in 1976, the Therac-25 treatment system, built by Atomic Energy

of Canada Limited (AECL) and COR MeV of France, was used to fight
cancer by providing radiation to a specific part of the body in the hope of
destroying tumors.

• Six known Therac-25 accidents have been documented, all involved
massive overdoses of radiation and three resulted in the death of the
patient, serious long-term injury and disfigurement occurred in the other
cases. Patients received an estimated 17,000 to 25,000 rads to very small
body areas. By comparison, doses of 1000 rads can be fatal if delivered
to the whole body.

• Analysis determined that the primary cause of the overdoses was faulty
software. The software was written in assembly language and was
developed and tested by the same person. The software included a
scheduler and concurrency in its design. When the system was first built,
operators complained that it took too long to enter the treatment plan into
the computer. As a result, the software was modified to allow operators
to quickly enter treatment data by simply pressing the Enter key when an
input value did not require changing.

CNT 4714: Threading Part 2 Page 12 Dr. Mark Llewellyn ©

The Therac-25 Accidents (cont.)

• This modification created a synchronization error (a race condition developed)
between the code that read the data entered by the operator and the code
controlling the machine. As a result, the actions of the machine would lag behind
the commands the operator entered. The machine appeared to administer the
dose entered by the operator, but it fact had an improper setting that focused
radiation at full power to a tiny spot on the body.

• The race condition was subsequently found to occur only when a certain non-
typical keystroke sequence was entered (an “X” to select a 25MeV photon
followed by “cursor-up” ,”E” to correctly set the 25MeV Electron mode, then
“Enter”), since this sequence of keystrokes did not occur very often, the error
went unnoticed for a long time.

• AECL was ultimately cited for improperly testing the software, which was only
tested on site in hospitals after a machine was assembled in place.

• The designer had reused software from older Therac-6 and Therac-20 models that
had hardware interlocks which masked the software defects. Some operators
noted that certain situations caused the machines to display MALFUNCTION
followed by a number between 1 and 64 on the display screen. However, the user
manual did not explain nor even address error codes, so the operators pressed the
“P” key (for proceed), to override the warning and proceed with the treatment.

CNT 4714: Threading Part 2 Page 13 Dr. Mark Llewellyn ©

Thread Synchronization
• To prevent a race condition, access to the shared object must

be properly synchronized.

– Lost update problem: one thread is in the process of updating
the shared value and another thread also attempts to update the
value.

– Even worse is when only part of the object is updated by each
thread in which case part of the object reflects information
from one thread while another part of the same object reflects
information from another thread.

• The problem can be solved by giving one thread at a time
exclusive access to code that manipulates the shared object.
During that time, other threads desiring to manipulate the
object must be forced to wait.

CNT 4714: Threading Part 2 Page 14 Dr. Mark Llewellyn ©

Thread Synchronization (cont.)

• When the thread with exclusive access to the object finishes

manipulating the object, one of the blocked threads will be

allowed to proceed and access the shared object.

– The next selected thread will be based on some protocol. The

most common of these is simply FCFS (priority-queue based).

• In this fashion, each thread accessing the shared object

excludes all other threads from accessing the object

simultaneously. This is the process known as mutual

exclusion.

• Mutual exclusion allows the programmer to perform

thread synchronization, which coordinates access to

shared objects by concurrent threads.

CNT 4714: Threading Part 2 Page 15 Dr. Mark Llewellyn ©

Synchronization Techniques

• There have been many different methods used to synchronize

concurrent processes. Some of the more common ones are:

– Test and Set Instructions. All general purpose processors now have

this kind of instruction, and it is used to build higher-level

synchronization constructs. Test and set does not block, that must be

built on top of it.

– p and v semaphores. Introduced by Dijkstra in the 1960’s and was the

main synchronization primitive for a long time. Its easy to build

semaphores from test and set instructions. Semaphores are low-level

and can be hard for programmers to read and debug. For your

information the p is short for the Dutch words proberen te verlangen

which means to “try to decrement” and the v stands for verhogen

which means to increment.

CNT 4714: Threading Part 2 Page 16 Dr. Mark Llewellyn ©

Synchronization Techniques (cont.)

– Read/write Locks. These are also commonly referred to as mutexes
(although some people still use the term mutex to refer to a

semaphore.) A lock provides a simple ”turnstile”: only one thread at

a time can be going through (executing in) a block protected by a

lock. Again, it is easy to build a lock from semaphores.

– Monitors. A monitor is a higher-level synchronization construct built

out of a lock plus a variable that keeps track of some related

condition, such as “the number of unconsumed bytes in the buffer”.

It is easy to build monitors from read/write locks. A monitor defines

several methods as a part of its protocol. Two of those predefined
methods are wait() and notify().

CNT 4714: Threading Part 2 Page 17 Dr. Mark Llewellyn ©

Types of Synchronization
• There are two basic types of synchronization between

threads:

1. Mutual exclusion is used to protect certain critical sections of code
from being executed simultaneously by two or more threads.
(Synchronization without cooperation.)

2. Signal-wait is used when one thread need to wait until another thread
has completed some action before continuing. (Synchronization with
cooperation.)

• Java includes mechanisms for both types of synchronization.

• All synchronization in Java is built around locks. Every Java
object has an associated lock. Using appropriate syntax, you
can specify that the lock for an object be locked when a method
is invoked. Any further attempts to call a method for the locked
object by other threads cause those threads to be blocked until
the lock is unlocked.

CNT 4714: Threading Part 2 Page 18 Dr. Mark Llewellyn ©

Thread Synchronization In Java

• Any object can contain an object that implements the Lock

interface (package java.util.concurrent.locks).

• A thread calls the Lock’s lock method to obtain the lock.

• Once a lock has been obtained by one thread the Lock

object will not allow another thread to obtain the lock until

the thread releases the lock (by invoking the Lock’s

unlock method).

• If there are several threads trying to invoke method lock on

the same Lock object, only one thread may obtain the lock,

with all other threads being placed into the wait state.

CNT 4714: Threading Part 2 Page 19 Dr. Mark Llewellyn ©

An Aside on Reentrant Locks

• Class ReentrantLock (package java.util.concurrent.locks)

is a basic implementation of the Lock interface.

– The constructor for a ReentrantLock takes a boolean argument

that specifies whether the lock has a fairness policy. If this is set to

true, the ReentrantLock’s fairness policy states that the longest-

waiting thread will acquire the lock when it is available. If set to false,

there is no guarantee as to which waiting thread will acquire the lock

when it becomes available.

• Using a lock with a fairness policy helps avoid indefinite

postponement (starvation) but can also dramatically reduce

the overall efficiency of a program. Due to the large decrease

in performance, fair locks should be used only in necessary

circumstances.

CNT 4714: Threading Part 2 Page 20 Dr. Mark Llewellyn ©

Condition Variables

• If a thread that holds the lock on an object determines that it

cannot continue with its task until some condition is satisfied,

the thread can wait on a condition variable.

• This removes the thread from contention for the processor by

placing it in a wait queue for the condition variable and

releases the lock on the object.

• Condition variables must be associated with a Lock and are

created by invoking Lock method newCondition, which

returns an object that implements the Condition interface.

• To wait on a condition variable, the thread can call the

Condition’s await method (see Life Cycle of a thread in

previous set of notes).

CNT 4714: Threading Part 2 Page 21 Dr. Mark Llewellyn ©

Condition Variables (cont.)

• Invoking the await method, immediately releases the

associated Lock and places the thread in the wait state for

that Condition. Other threads can then try to obtain the

Lock.

• When a runnable thread completes a task and determines that

the waiting thread can now continue, the runnable thread can

call Condition method signal to allow a thread in that

Condition’s wait queue to return to the runnable state. At this

point, the thread that transitioned from the wait state to the

runnable state can attempt to reacquire the Lock on the object.

Of course there is no guarantee that it will be able to complete

its task this time and the cycle may repeat.

CNT 4714: Threading Part 2 Page 22 Dr. Mark Llewellyn ©

Condition Variables (cont.)

• If multiple threads are in a Condition’s wait queue when a

signal is invoked, the default implementation of

Condition signals the longest-waiting thread to move to

the runnable state.

• If a thread calls Condition method signalAll, then all of

the threads waiting for that condition move to the runnable

state and become eligible to reacquire the Lock.

• When a thread is finished with a shared object, it must invoke

method unlock to release the Lock.

CNT 4714: Threading Part 2 Page 23 Dr. Mark Llewellyn ©

Thread States With Synchronization

Thread attempting

access

Queue of threads waiting for lock

Already locked by

another thread

Running State

Queue of threads waiting for notify()

notify() by

another thread

wait() by this threadLock obtained

by this thread

Unlock by

another thread

– one in queue

moves to

running state

unlock by this thread

does not remove it from

the running state

CNT 4714: Threading Part 2 Page 24 Dr. Mark Llewellyn ©

Deadlock

• Deadlock will occur when a waiting thread (call it thread 1)

cannot proceed because it is waiting (either directly or

indirectly) for another thread (call it thread 2) to proceed.,

while simultaneously thread 2 cannot proceed because it is

waiting (either directly or indirectly) for thread 1 to proceed.

• When multiple threads manipulate a shared object using locks,

ensure that if one thread invokes await to enter the wait state

for a condition variable, a separate thread eventually will

invoke method signal to transition the waiting thread on the

condition variable back to the runnable state.

– If multiple threads may be waiting on the condition variable, a separate
thread can invoke method signalAll as a safeguard to ensure that all

of the waiting threads have another opportunity to perform their tasks.

CNT 4714: Threading Part 2 Page 25 Dr. Mark Llewellyn ©

Producer/Consumer Problem
Threads Without Synchronization

• In a producer/consumer relationship, the producer portion of an

application generates data and stores it in a shared object, and

the consumer portion of an application reads data from the

shared object.

– Common examples are print spooling, copying data onto CDs, etc.

• In a multithreaded producer/consumer relationship, a producer

thread generates data and places it in a shared object called a

buffer. A consumer thread reads data from the buffer.

• What we want to consider first is how logic errors can arise if

we do not synchronize access among multiple threads

manipulating shared data.

CNT 4714: Threading Part 2 Page 26 Dr. Mark Llewellyn ©

Producer/Consumer w/o Synchronization

• The following example sets up a producer and consumer thread

utilizing a shared buffer (code is on the webpage). The

producer thread generates the integer numbers from 1 to 10,

placing the values in the shared buffer. The consumer process

reads the values in the buffer and prints the sum of all values

consumed.

• Each value the producer thread writes into the buffer should be

consumed exactly once by the consumer thread. However, the

threads in this example are not synchronized.

– This means that data can be lost if the producer writes new data into

the buffer before the consumer has consumed the previous value.

– Similarly, data can be incorrectly duplicated if the consumer thread

consumes data again before the producer thread has produced the next

value.

CNT 4714: Threading Part 2 Page 27 Dr. Mark Llewellyn ©

Producer/Consumer w/o Synchronization
(cont.)

• Since the producer thread will produce the values from 1 to
10, the correct sum that should be 55.

• The consumer process will arrive at this value only if each
item produced by the producer thread is consumed exactly
once by the consumer thread. No values are missed and none
are consumed twice.

• I’ve set it up so that each thread writes to the screen what is
being produced and what is being consumed.

• Note: the producer/consumer threads are put to sleep for a
random interval between 0 and 3 seconds to emphasize the
fact that in multithreaded applications, it is unpredictable
when each thread will perform its task and for how long it
will perform the task when it has a processor.

CNT 4714: Threading Part 2 Page 28 Dr. Mark Llewellyn ©

// Producer's run method stores the values 1 to 10 in buffer.

import java.util.Random;

public class Producer implements Runnable{

private static Random generator = new Random();

private Buffer sharedLocation; // reference to shared object

// constructor

public Producer(Buffer shared) {

sharedLocation = shared;

} // end Producer constructor

// store values from 1 to 10 in sharedLocation

public void run() {

int sum = 0;

for (int count = 1; count <= 10; count++) {

try { // sleep 0 to 3 seconds, then place value in Buffer

Thread.sleep(generator.nextInt(3000)); // sleep thread

sharedLocation.set(count); // set value in buffer

sum += count; // increment sum of values

System.out.printf("\t%2d\n", sum);

} // end try

// if sleeping thread interrupted, print stack trace

catch (InterruptedException exception) {

exception.printStackTrace();

} // end catch

} // end for

System.out.printf("\n%s\n%s\n", "Producer done producing.",

"Terminating Producer.");

} // end method run

} // end class Producer

Producer Thread Class

Randomly

sleep the

thread for up

to 3 seconds

CNT 4714: Threading Part 2 Page 29 Dr. Mark Llewellyn ©

// Consumer's run method loops ten times reading a value from buffer.

import java.util.Random;

public class Consumer implements Runnable {

private static Random generator = new Random();

private Buffer sharedLocation; // reference to shared object

// constructor

public Consumer(Buffer shared) {

sharedLocation = shared;

} // end Consumer constructor

// read sharedLocation's value four times and sum the values

public void run() {

int sum = 0;

for (int count = 1; count <= 10; count++) {

// sleep 0 to 3 seconds, read value from buffer and add to sum

try {

Thread.sleep(generator.nextInt(3000));

sum += sharedLocation.get();

System.out.printf("\t\t\t%2d\n", sum);

} // end try

// if sleeping thread interrupted, print stack trace

catch (InterruptedException exception) {

exception.printStackTrace();

} // end catch

} // end for

System.out.printf("\n%s %d.\n%s\n",

"Consumer read values totaling", sum, "Terminating Consumer.");

} // end method run

} // end class Consumer

Consumer Thread Class

Randomly

sleep the

thread for up

to 3 seconds

CNT 4714: Threading Part 2 Page 30 Dr. Mark Llewellyn ©

Buffer Interface

// Buffer interface specifies methods called by Producer and Consumer.

public interface Buffer {

public void set(int value); // place int value into Buffer (WRITE)

public int get(); // return int value from Buffer (READ)

} // end interface Buffer

// UnsynchronizedBuffer represents a single shared integer.

public class UnsynchronizedBuffer implements Buffer {

private int buffer = -1; // shared by producer and consumer threads

// place value into buffer

public void set(int value) {

System.out.printf("Producer writes\t%2d", value);

buffer = value;

} // end method set

// return value from buffer

public int get() {

System.out.printf("Consumer reads\t%2d", buffer);

return buffer;

} // end method get

} // end class UnsynchronizedBuffer

Unsynchronized Buffer

Class

CNT 4714: Threading Part 2 Page 31 Dr. Mark Llewellyn ©

// Application shows two threads manipulating an unsynchronized buffer.

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class SharedBufferTest {

public static void main(String[] args){

// create new thread pool with two threads

ExecutorService application = Executors.newFixedThreadPool(2);

// create UnsynchronizedBuffer to store ints

Buffer sharedLocation = new UnsynchronizedBuffer();

System.out.println(" \t\t \tSum \tSum");

System.out.println("Action\t\tValue\tProduced\tConsumed");

System.out.println("------\t\t-----\t--------\t--------\n");

// try to start producer and consumer giving each of them access to SharedLocation

try {

application.execute(new Producer(sharedLocation));

application.execute(new Consumer(sharedLocation));

} // end try

catch (Exception exception) {

exception.printStackTrace();

} // end catch

application.shutdown(); // terminate application when threads end

} // end main

} // end class SharedBufferTest

Producer/Consumer

Driver Class

CNT 4714: Threading Part 2 Page 32 Dr. Mark Llewellyn ©

sharedLocation.set(count)

Producer Side Consumer Side

sharedLocation

(Buffer)

set method returns

sum += sharedLocation.get()

get method returns

Unsynchronized Case

running running

Both the producer

and consumer

threads are always in

the running state –

never blocked.

CNT 4714: Threading Part 2 Page 33 Dr. Mark Llewellyn ©

The unsynchronizd

threads did not produce

the same sum. The

producer produced

values that sum to 55,

but the consumer

consumed values that

sum to 69! Notice that

the consumer read the

value 7 three times and

failed to read the values

of several values at all

(e.g. 2, 3 and).

CNT 4714: Threading Part 2 Page 34 Dr. Mark Llewellyn ©

In this execution, the sum

produced by the consumer

is closer but still inaccurate

because the consumer read

the value of 3 two times and

failed to read the values 4,

and 9 at all.

CNT 4714: Threading Part 2 Page 35 Dr. Mark Llewellyn ©

// SynchronizedBuffer synchronizes access to a single shared integer.

import java.util.concurrent.locks.Lock;

import java.util.concurrent.locks.ReentrantLock;

import java.util.concurrent.locks.Condition;

public class SynchronizedBuffer implements Buffer

{

// Lock to control synchronization with this buffer

private Lock accessLock = new ReentrantLock();

// condition variables to control reading and writing

private Condition canWrite = accessLock.newCondition();

private Condition canRead = accessLock.newCondition();

private int buffer = -1; // shared by producer and consumer threads

private boolean occupied = false; // whether buffer is occupied

// place int value into buffer

public void set(int value)

{

accessLock.lock(); // lock this object

// output thread information and buffer information, then wait

try

{

// while buffer is not empty, place thread in waiting state

while (occupied)

{

System.out.println("Producer tries to write.");

displayState("Buffer full. Producer waits.");

canWrite.await(); // wait until buffer is empty

} // end while

Synchronized Buffer

Class

No fairness policy needed since only a

single producer thread and single

consumer thread

Condition variables on the lock.

Condition canWrite contains a

queue for threads waiting to

write while the buffer is full. If

the buffer is full the Producer

calls method await on this

condition. When the Consumer

reads data from a full buffer, it

calls method signal on this

Condition. Condition canRead

contains a queue for threads

waiting while the buffer is empty.

If the buffer is empty the

Consumer calls method await

on this Condition. When the

Producer writes to the empty

buffer, it will call method signal

on this Condition.

Acquire lock

CNT 4714: Threading Part 2 Page 36 Dr. Mark Llewellyn ©

buffer = value; // set new buffer value

// indicate producer cannot store another value

// until consumer retrieves current buffer value

occupied = true;

displayState("Producer writes " + buffer);

// signal thread waiting to read from buffer

canRead.signal();

} // end try

catch (InterruptedException exception) {

exception.printStackTrace();

} // end catch

finally {

accessLock.unlock(); // unlock this object

} // end finally

} // end method set

// return value from buffer

public int get() {

int readValue = 0; // initialize value read from buffer

accessLock.lock(); // lock this object

// output thread information and buffer information, then wait

try {

// while no data to read, place thread in waiting state

while (!occupied) {

System.out.println("Consumer tries to read.");

displayState("Buffer empty. Consumer waits.");

canRead.await(); // wait until buffer is full

} // end while

Signal Consumer thread that a value

has been produced and can be read.

Unlock object before exiting method

Acquire lock on the buffer

Consumer must wait until a value

has been produced by the

Producer. Await signal by

Producer

CNT 4714: Threading Part 2 Page 37 Dr. Mark Llewellyn ©

// indicate that producer can store another value

// because consumer just retrieved buffer value

occupied = false;

readValue = buffer; // retrieve value from buffer

displayState("Consumer reads " + readValue);

// signal thread waiting for buffer to be empty

canWrite.signal();

} // end try

// if waiting thread interrupted, print stack trace

catch (InterruptedException exception) {

exception.printStackTrace();

} // end catch

finally {

accessLock.unlock(); // unlock this object

} // end finally

return readValue;

} // end method get

// display current operation and buffer state

public void displayState(String operation)

{

System.out.printf("%-40s%d\t\t\t\t%b\n", operation, buffer,

occupied);

} // end method displayState

} // end class SynchronizedBuffer

Signal waiting Producer that

the buffer is empty and it can

write

Make sure lock is released

CNT 4714: Threading Part 2 Page 38 Dr. Mark Llewellyn ©

// Application shows two threads manipulating a synchronized buffer.

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class SharedBufferTest2

{

public static void main(String[] args)

{

// create new thread pool with two threads

ExecutorService application = Executors.newFixedThreadPool(2);

// create SynchronizedBuffer to store ints

Buffer sharedLocation = new SynchronizedBuffer();

System.out.println("Using Standard Locking");

System.out.printf("%-40s%s\t\t%s\n%-40s%s\n\n", "Operation",

"Buffer Contents", "Occupied", "---------", "---------------\t\t--------");

try { // try to start producer and consumer

application.execute(new Producer(sharedLocation));

application.execute(new Consumer(sharedLocation));

} // end try

catch (Exception exception)

{

exception.printStackTrace();

} // end catch

application.shutdown();

} // end main

} // end class SharedBufferTest2

Driver Class For Illustrating

Synchronization In

Producer/Consumer Problem

Only change between

SharedBufferTest for

unsynchronized version

CNT 4714: Threading Part 2 Page 39 Dr. Mark Llewellyn ©

accessLock.unlock(); //release lock

Producer Side Consumer Side

sharedLocation

(Buffer)
set method returns

readValue= buffer;

get method returns

Synchronized Case

accessLock.lock(); //acquire lock

while (occupied) //buffer not empty

canWrite.await(); block on condition

buffer = value; //perform write

occupied = true; //indicate write

canRead.signal(); //signal thread

canWrite condition queue

no

signal from consumer

lock acquisition queue

accessLock.lock(); //acquire lock

write

while (!occupied) //buffer empty

no

canRead.await(); block

canRead condition queue

occupied = false; //indicate read

signal from producer

canWrite.signal(); //signal thread

accessLock.unlock(); //release lock

released

read

released

wait wait

CNT 4714: Threading Part 2 Page 40 Dr. Mark Llewellyn ©

Producer Thread

Consumer Thread

Running

Running

Blocked

accessLock queue

canWrite condition queue

canRead condition queue

buffer full (occupied)

canWrite signaled

lock request fails

lock released

lock request fails

buffer empty

canRead signaled

State Diagram – Synchronized Version

CNT 4714: Threading Part 2 Page 41 Dr. Mark Llewellyn ©

Both the Producer and Consumer

threads produced the same sum –

synchronized threads

CNT 4714: Threading Part 2 Page 42 Dr. Mark Llewellyn ©

Both the Producer and Consumer

threads produced the same sum –

synchronized threads

CNT 4714: Threading Part 2 Page 43 Dr. Mark Llewellyn ©

Monitors and Monitor Locks

• Another way to perform synchronization is to use Java’s built-in
monitors. Every object has a monitor. Strictly speaking, the monitor is
not allocated unless it is used.

• A monitor allows one thread at a time to execute inside a synchronized
statement on the object. This is accomplished by acquiring a lock on the
object when the program enters the synchronized statement.

• Where object is the object whose monitor lock will be acquired.

• If there are several synchronized statements attempting to execute on an
object at the same time, only one of them may be active on the object at
once – all the other threads attempting to enter a synchronized statement
on the same object are placed into the blocked state (see next page).

synchronized (object)

{

statements

} //end synchronized statement

CNT 4714: Threading Part 2 Page 44 Dr. Mark Llewellyn ©

Monitors and Monitor Locks (cont.)

• When a synchronized statement finishes executing, the monitor lock

on the object is released and the highest priority blocked thread

attempting to enter a synchronized statement proceeds.

• Java also allows synchronized methods. A synchronized method is

equivalent to a synchronized statement enclosing the entire body of a

method.

• If a thread obtains the monitor lock on an object and then discovers

that it cannot continue with its task until some condition is satisfied,

the thread can invoke Object method wait, releasing the monitor

lock on the object. This will place the thread in the wait state.

• When a thread executing a synchronized statement completes or

satisfies the condition on which another thread may be waiting, it can

invoke Object method notify to allow a waiting thread to transition

to the blocked state again.

CNT 4714: Threading Part 2 Page 45 Dr. Mark Llewellyn ©

Thread Class to Read Steam Boiler Pressure Gauge and

Increase the Pressure if Within Range

Synchronized Method Version

//thread class to raise the pressure in the Boiler

class pressure extends Thread {

synchronized void RaisePressure() {

if (SteamBoiler.pressureGauge < SteamBoiler.safetyLimit-15) {

//wait briefly to simulate some calculations

try {sleep(100); } catch (Exception e) { }

SteamBoiler.pressureGauge+= 15; //raise the pressure 15 psi

System.out.println("Thread " + getName() + " finds pressure within limits

- increases pressure");

}

else ; //the pressure is too high - do nothing

}

public void run() {

RaisePressure(); //this thread is to raise the pressure

}

}

CNT 4714: Threading Part 2 Page 46 Dr. Mark Llewellyn ©

CNT 4714: Threading Part 2 Page 47 Dr. Mark Llewellyn ©

Mutual Exclusion Over a Block of Statements

• Applying mutual exclusion to a block of statements rather

than to an entire class or an entire method is handled in much

the same manner, by attaching the keyword synchronized

before a block of code.

• You must explicitly mention in parentheses the object whose

lock must be acquired before the block can be entered.

• The following example illustrates mutual exclusion over a

block using the pressure gauge example on pages 7 and 8.

CNT 4714: Threading Part 2 Page 48 Dr. Mark Llewellyn ©

Thread Class to Read Steam Boiler Pressure Gauge and

Increase the Pressure if Within Range – Synchronized Version

//thread class to raise the pressure in the Boiler

class pressure extends Thread {

static Object O = new Object();

void RaisePressure() {

synchronized(O) {

if (SteamBoiler.pressureGauge < SteamBoiler.safetyLimit-15) {

//wait briefly to simulate some calculations

try {sleep(100); } catch (Exception e) { }

SteamBoiler.pressureGauge+= 15; //raise the pressure 15 psi

System.out.println("Thread " + this.getName() + " finds pressure within limits - increases pressure");

}

else

System.out.println("Thread" + this.getName() + " finds pressure too high - do nothing");

} //end synchronized block

}

public void run() {

RaisePressure(); //this thread is to raise the pressure

}

}

Synchronized statement

requires an Object to lock.

Synchronized

block

CNT 4714: Threading Part 2 Page 49 Dr. Mark Llewellyn ©

Each thread sleeps for

100 msec before checking

pressure gauge

CNT 4714: Threading Part 2 Page 50 Dr. Mark Llewellyn ©

Caution When Using Synchronization

• As with any multi-threaded application, care must be taken

when using synchronization to achieve the desired effect and

not introduce some serious defect in the application.

• Consider the variation of the pressure gauge example that

we’ve been dealing with on the following page. Study the

code carefully and try to determine if it will achieve the same

effect as the previous version of the code.

• Is it correct? Why or why not?

CNT 4714: Threading Part 2 Page 51 Dr. Mark Llewellyn ©

Does this code correctly synchronize the pressure gauge reading threads?

//thread class to raise the pressure in the Boiler

class pressure extends Thread {

synchronized void RaisePressure() {

if (SteamBoiler.pressureGauge < SteamBoiler.safetyLimit-15) {

//wait briefly to simulate some calculations

try {sleep(100); } catch (Exception e) { }

SteamBoiler.pressureGauge+= 15; //raise the pressure 15 psi

System.out.println("Thread " + this.getName() + " finds pressure within limits - increases pressure");

}

else

System.out.println("Thread" + this.getName() + " finds pressure too high - do nothing");

}

public void run() {

RaisePressure(); //this thread is to raise the pressure

}

}
No! The “this” object is one of the 10 different threads that are created.

Each thread will successfully grab its own lock, and there will be no

exclusion between the different threads.

Synchronization excludes threads working on the same object; it does

not synchronize the same method on different objects!

CNT 4714: Threading Part 2 Page 52 Dr. Mark Llewellyn ©

NO!

